Do Now

1.
$$12^2 =$$

1.
$$12^2 =$$
 2. $7 \times -9 =$ 3. $\sqrt{196} =$ 4. $3^2 =$

$$3. \sqrt{196} =$$

$$4.3^2 =$$

5. Is the $\sqrt{49}$ rational or irrational?

Perfect Squares and Square Roots I CAN:

- Take the square root of rational perfect squares
 - I can solve an equation of the form x² = p, where p is a perfect square for both solutions
- solve for the side length of a square when given a certatin area

8.EE.2

Review The Real Number System **Real Numbers** Our number system #'s that can be written as a fraction **Rational Numbers** #'s that cannot be written as a fraction **Irrational Numbers** all positive numbers including 0 Whole Numbers Integers whole numbers and their opposites 1,4,9,16,25,36,49,64,81,100, 121, **Perfect Squares** 144, 169, 196, 225 13 0.234 0.34858594... 15

Square Roots

Area-

Perimeter-

The opposite of squaring a number is taking the **square root.**

For example $\sqrt{81}$ asks what number multiplied by itself is equal to 81?

Is there another solution to that problem?

Squares and roots

Here is a list that will be helpful:

i ici c is a i	ist that will b
$1^2 = 1$	$\sqrt{1} = 1$
$2^2 = 4$	$\sqrt{4}=2$
$3^2 = 9$	$\sqrt{9} = 3$
$4^2 = 16$	$\sqrt{16} = 4$
$5^2 = 25$	$\sqrt{25} = 5$
$6^2 = 36$	$\sqrt{36} = 6$
$7^2 = 49$	$\sqrt{49} = 7$
$8^2 = 64$	$\sqrt{64} = 8$
$9^2 = 81$	$\sqrt{81} = 9$
$10^2 = 100$	$\sqrt{100} = 10$
$11^2 = 121$	$\sqrt{121}=11$
$12^2 = 144$	$\sqrt{144} = 12$

Once we have learned the perfect squares we can identify nonperfect squares

$$\sqrt{18}$$

$$\sqrt{144}$$

Let's identify the two whole numbers that these square roots fall between.

Example: $\sqrt{3}$

* The square roots of ALL perfect squares are *rational*.

* The square roots of numbers that are NOT perfect squares are *irrational*.

Try This: Identify each number as rational or irrational

1.
$$\sqrt{2}$$

1.
$$\sqrt{2}$$
2. $-\sqrt{81}$

- 3. 0.53
- 4. $0.\overline{627}$
- 5. 13.875931...

CFU

$$1.\sqrt{64}$$

1.
$$\sqrt{64}$$
 2. $-\sqrt{36}$ 3. $\sqrt{\frac{81}{121}}$

In Search of Pefect Squares

Find Each Square Root

Perfect Squares and Pefect Cubes

Exit Ticket

$$1.\sqrt{0}$$

2.
$$-\sqrt{\frac{25}{196}}$$